Coxeter groups, the Davis complex, and isolated flats

Ferdinand Vanmaele

April 15, 2019

Abstract

Coxter groups arose as a natural generalization of reflection groups. J. Tits defined them in a simple way using generators and relations, that is, using a group presentation $W \cong\langle S \mid R\rangle$. Coxeter groups have a wide range of applications; for example, every Weyl group may be realized as a finite, irreducible Coxeter group.

The Davis complex Σ is a geometric realization of Coxeter groups, which is $\operatorname{CAT}(0)$ for every Coxeter group. It has therefore been one of the first classes of examples for $\operatorname{CAT}(0)$ spaces. We first provide a general introduction to Coxeter groups and the Davis complex, and continue discussing when the Davis complex has so called flats.

Flats are convex subsets which are isometric to \mathbb{R}^{n}. We say that Σ has isolated flats if there exists a collection \mathfrak{F} of flats in Σ, satisfyingthe isolated property: (A) There is a constant $D<\infty$ such that each flat F of Σ lies in a tubular D-neighborhood of some $C \in \mathfrak{F}$. (B) For each positive $r<\infty$, there is a constant $\rho=\rho(r)<\infty$ so that for any two distincit elements $C, C^{\prime} \in \mathfrak{F}$ we have $\operatorname{diam}\left(\mathcal{N}_{r}(C) \cap\right.$ $\left.\mathcal{N}_{r}\left(C^{\prime}\right)\right)<\rho$, where $\mathcal{N}_{r}(C)$ denotes the tubular r-neighborhood of C. Given a Coxeter group and a set of generators S, we can read from the Coxeter diagram if the resulting Davis complex has isolated flats. This classification is due to work by P. Caprace. We introduce the necessary concepts and give examples of Coxeter groups where Σ has isolated flats.

Contents

1 Coxeter groups 3
1.1 Coxeter diagrams 6
1.2 The length function 8
1.2.1 The Exchange Condition 10
1.3 Finite Coxeter groups 11
1.3.1 Braid moves 12
1.4 Affine Coxeter groups 13
1.4.1 Geometric actions 13
1.4.2 Geometric reflection groups 14
1.4.3 Cosine matrix 15
1.5 Hyperbolic Coxeter groups 17
2 The Tits representation 18
2.1 Coxeter polytopes 20
3 Special subgroups 22
3.1 Diagrams for special subgroups 24
4 Cayley graphs 26
4.1 Products in the Cayley graph 28
5 The Davis complex 31
5.1 Geometric realization of a poset 31
5.2 The Davis complex as CW complex 35
5.3 The CAT(0) inequality 37
5.4 The Davis complex is CAT(0) 38
6 Flats in the Davis complex 41
6.1 Products in the Davis complex 41
6.2 Flat subspaces 43

1 Coxeter groups

Coxeter groups can be realized in a straightforward combinatorial fashion, wherin the presentation of the group is of central importance, and analysis for the group is frequently performed with little reference to the group's geometric structure. The combinatorial viewpoint will facilitate the proofs of many results.
Note. For a detailed treatment on free groups and group presentations, see Elements, Loeh.

Definition 1.1. Let S be a set, $F(S)$ the free group over S, and $R=\left(r_{j}\right)_{j \in J}$ a family of words in $F(S)$. A group presentation is then defined by $\langle S|$ $R\rangle:=F(S) /\langle\langle R\rangle\rangle$, where $\langle\langle R\rangle\rangle$ is the smallest normal subgroup containing R.

A group G is finitely presented if there exists a finite generating set S and a finite set $R \subset F(S)$ of relators such that $G \cong\langle S \mid R\rangle$. A classical example of a finitely presented group is given by the following:

Example 1.2 (|Massey, §5.3]). The fundamental group of an orientable surface Σ_{n} with genus n (i.e. the connected sum of n tori) is given by the finite presentation:

$$
\pi_{1}\left(\Sigma_{n}\right) \cong\left\langle a_{1}, b_{1}, \ldots, a_{n}, b_{n} \mid a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{n} b_{n} a_{n}^{-1} b_{n}^{-1}\right\rangle .
$$

Definition 1.3 ([Davis, Definition 3.3.2]). Let I be an indexing set, and let $S=\left\{s_{i}\right\}_{i \in I}$. Let $M=\left(m_{i j}\right)_{i, j \in I}$ be a matrix such that

- $m_{i i}=1$ for all $i \in I$;
- $m_{i j}=m_{j i}$ for all $i, j \in I$; and
- $m_{i j} \in\{2,3,4, \ldots\} \cup\{\infty\}$ for all distinct $i, j \in I$.

Then M is called a Coxeter matrix. The Coxeter group $W=W_{M}$ associated to a Coxeter matrix M is the finite presentation:

$$
\left.W \cong\langle S| s_{i}^{2}=\mathbb{1} \forall i \in I, \text { and }\left(s_{i} s_{j}\right)^{m_{i j}}=\mathbb{1} \forall i \neq j\right\rangle
$$

The pair (W, S) is a Coxeter system and S is the set of Coxeter generators. The cardinality of S is called the rank of (W, S). If for $i \neq j$ we have $m_{i j} \in\{2, \infty\}$, then (W, S) is called right-angled.

Remark 1.4.

- Throughout our discussion, we will assume that the indexing set I is finite. For example, we wish that the group W acts cocompactly on a certain geometric realisation (the Davis complex). This is only the case when W is finitely generated (that is, when I is finite.)
- There is a one-to-one correspondence between Coxeter matrices and Coxeter systems, as demonstrated by the following proposition. It is proved using a faithful linear representation $\sigma: W \rightarrow G L_{n}(\mathbb{R})$, the Tits representation. (See section 2.)

Proposition 1.5. Suppose M is a Coxeter matrix, and W the group with generating set S defined by the presentation associated to M.

1. For each $i \in I$, the element s_{i} is an involution.
2. Each s_{i} is a distinct group element in W.
3. $s_{i} s_{j}$ has order $m_{i j}$.

An element of order 2 is also called an involution. The next lemma shows, directly from the presentation, that each $s \in S$ is an involution in the group W. The other properties may be shown with a faithful linear representation $\sigma: W \hookrightarrow G L_{n}(\mathbb{R})$, where $\sigma(s)^{2}=\mathrm{id}$ and $(\sigma(s) \sigma(t))^{m_{s t}}=\mathrm{id}$.

Lemma 1.6. Let (W, S) be a Coxeter system. There is an epimorphism $\varepsilon: W \rightarrow \mathbb{Z} / 2 \mathbb{Z}$ induced by $\varepsilon(s)=-1$ for all $s \in S$.

Proof. By definition, $W \cong F(S) / R$. By the universal property of free groups, we have a unique homomorphism

$$
F(S) \rightarrow \mathbb{Z} / 2
$$

extending ε. This homomorphism factors through W, because $\varepsilon\left(\left(s_{i} s_{j}\right)^{m_{i j}}\right)=$ $((-1)(-1))^{m_{i j}}=1$.

Remark 1.7 ([Abramenko, Exercise 2.55]). Let M be a matrix as in Definition 1.3, but which is not symmetric. Then there are elements $s, t \in S$ such that the order of the image of $s t$ in (W, S) is not $m(s, t)$.

Note that with an appropriately chosen generator set S^{\prime} and Coxeter matrix $M^{\prime},\left(W, S^{\prime}\right)$ is still a Coxeter system.

Proof. Let M be non-symmetric. Then there are some $s, t \in S$ such that $m_{s t} \neq m_{t s}$, that is $(s t)^{n}=(t s)^{m}=1$ with $m \neq n$. Without loss of generality,
let $m<n$. Assume by contradiction that $(s t)^{n}=1$ with $(s t)^{i} \neq 1$ for all $i \in\{1, \ldots, n-1\}$. There then holds

$$
\begin{array}{lll}
& s t \cdots s t & =1 \\
\Leftrightarrow & s(t s \cdots t s)^{n-1} t & =1 \\
\Leftrightarrow & s \underbrace{(t s)^{m}}_{=1}(t s)^{n-1-m} t & =1 \\
\Leftrightarrow & (s t)^{n-m} & =1
\end{array}
$$

with $n-m<n$, a contradiction.
Example 1.8 (Infinite dihedral groups). Let s_{1} and s_{2} be the reflections of the real line \mathbb{R} in the points 0 and 1 , respectively. (Note any point on the line is a hyperplane.)

The composition $s_{1} s_{2}$ is a translation by 2 units to the left; hence $\left\langle s_{1}, s_{2}\right\rangle$ is infinite cyclic. The group generated by these reflections has the presentation:

$$
W:=D_{\infty}=\left\langle s_{1}, s_{2} \mid s_{1}^{2}=s_{2}^{2}=1\right\rangle
$$

and Coxeter matrix $\left(\begin{array}{cc}1 & \infty \\ \infty & 1\end{array}\right)$. The action of W on \mathbb{R}^{1} induces a tesselation of the line by closed intervals which are in bijection with the elements of W.

Figure 1: The infinite dihedral group

Example 1.9 (Euclidean triangle group). Let s_{1}, s_{2} and s_{3} be the reflections in the plane \mathbb{R}^{2} through sides of equilateral triangles. The composition $s_{1} s_{2}$ is a flip upwards followed by a flip to the left. The group generated by these reflections has the presentation:

$$
W:=(3,3,3)=\left\langle s_{1}, s_{2}, s_{3} \mid s_{i}^{2}=1 \forall i,\left(s_{i} s_{j}\right)^{3}=1 \forall i \neq j\right\rangle
$$

and Coxeter matrix $\left(\begin{array}{lll}1 & 3 & 3 \\ 3 & 1 & 3 \\ 3 & 3 & 1\end{array}\right)$. W induces a tesselation of the plane by equilateral triangles which are in bijection with the elements of W.

Figure 2: The Euclidean triangle group $(3,3,3)$

1.1 Coxeter diagrams

Before giving further examples of Coxeter groups, we define the Coxeter graph which allows to directly read properties of Coxeter groups from a certain graph.

Definition 1.10 (Davis, §3.5.1]). Suppose that $M=\left(m_{i j}\right)_{i, j \in I}$ is a Coxeter matrix on a set I. We associate to M a graph $\Gamma=\Gamma_{M}$ called its Coxeter graph. The vertex set of Γ is I, representing generators $\left(s_{i}\right)_{i \in I}$.

- Distinct vertices i and j are connected by an edge if and only if $m_{i j} \geq 3$.
- The edge $\{i, j\}$ is labeled by $m_{i j} \geq 4$. (If $m_{i j}=3$, the edge is left unlabeled.)

The graph Γ together with the labeling of its edges is called the Coxeter diagram associated to M. The vertices of Γ are often called the nodes of the diagram.

Example 1.11.

- The dihedral group $D_{2 m}$ of order $2 m$ (the isometry group of a regular polygon with $2 m$ sides) has Coxeter matrix and diagram:

$$
\begin{array}{r}
\left(\begin{array}{cc}
1 & m \\
m & 1
\end{array}\right), \quad \bullet \frac{m}{\bullet} \text { if } m \geq 4, \text { or } \bullet-\text { if } m=3 \\
\text { or } \bullet
\end{array} \bullet \text { if } m=2
$$

- The infinite dihedral group D_{∞} is given by:

$$
\left(\begin{array}{cc}
1 & \infty \\
\infty & 1
\end{array}\right), \quad \bullet \xrightarrow{\infty} \bullet
$$

- The $(3,3,3)$ triangle group is given by:

$$
\left(\begin{array}{lll}
1 & 3 & 3 \\
3 & 1 & 3 \\
3 & 3 & 1
\end{array}\right)
$$

- ([Suter, p.8]) The Coxeter system with diagram:

is isomorphic to $P G L_{2}(\mathbb{Z})$, defined as the quotient group

$$
G L_{2}(\mathbb{Z}) /\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right)\right\}
$$

with generators:

$$
R=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right], \quad S=\left[\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right], \quad T=\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right]
$$

Remark 1.12 ([Thomas, 1.19.4]). A given Coxeter group may have more than one (conjugacy class of) generating set, that is, more than one Coxeter system. This is reflected by different Coxeter diagrams, as the following example shows.

Example 1.13. Let $W=D_{12}$ be the isometry group of a 12-gon. We consider the following diagrams:

$$
\begin{array}{cc}
\left(\begin{array}{ll}
1 & 6 \\
6 & 1
\end{array}\right), & \bullet 1 \frac{6}{\bullet_{2}}, \\
\left(\begin{array}{lll}
1 & 3 & 2 \\
3 & 1 & 2 \\
2 & 2 & 1
\end{array}\right), & \bullet_{1} \frac{3}{} \bullet_{2} \tag{2}
\end{array} \bullet_{3} . .
$$

In the first diagram, the element $w=\left(s_{1} s_{2}\right)^{3}$, a rotation by the angle π about the origin, is a central involution. (That is, an involution which commutes with all elements in W.)

The group (1) then splits as the direct product of $\langle w\rangle \cong \mathbb{Z}_{2}$ and a copy of D_{6}, generated by the reflections s_{1} and $s_{2} s_{1} s_{2}$. Setting $t_{1}=s_{1}, t_{2}=s_{2} s_{1} s_{2}$ and $t_{3}=w$ results in the group (2).

Remark 1.14. By replacing an axis of reflection with an axis of rotation, we get a third presentation of the D_{12} :

$$
G=\left\langle s, t \mid s^{6}=1, s t=t s^{-1}\right\rangle
$$

The finite presentation G is not a Coxeter system. We can write it as the following semi-direct product: [Loeh, Example 2.3.5]

$$
\begin{aligned}
D_{12} & \longleftrightarrow \mathbb{Z}_{6} \rtimes_{\varphi} \mathbb{Z}_{2} \\
s & \longmapsto([1], 0) \\
t & \longmapsto(0,[1]),
\end{aligned}
$$

where $\varphi: \mathbb{Z} / 2 \mathbb{Z} \rightarrow$ Aut $\mathbb{Z} / 2 \mathbb{Z}$ is given by multiplication by -1 . Similarly, the dihedral group D_{∞} is isomorphic to $\mathbb{Z} \rtimes_{\varphi} \mathbb{Z}_{2}$.

Definition 1.15. We call a Coxeter system (W, S) irreducible if the Coxeter graph is connected.

Remark 1.16. If W is reducible with connected components I and J, then W allows a direct product composition:

$$
W_{T} \times W_{T^{\prime}}, \quad T=\left(s_{i}\right)_{i \in I}, \quad T^{\prime}=\left(s_{j}\right)_{j \in J}
$$

where the subgroups W_{T} and $W_{T^{\prime}}$ in W are generated by T and T^{\prime}, respectively.

We delay the proof of this remark to section 3, after we have established properties on subgroups of Coxeter systems. A simple example is given by $D_{\infty} \times D_{\infty}$, which has Coxeter diagram:

1.2 The length function

In this section, we consider the length function of a word in a Coxeter system (W, S). As a method commonly used for establishing properties of Coxeter systems, we demonstrate some of its basic properties.

Definition 1.17. Let (W, S) be a Coxeter system. We define the length function

$$
\begin{aligned}
\ell: W \longrightarrow \mathbb{Z}_{\geq 0} \\
\quad w \longmapsto \min \left\{n \mid \exists s_{1}, \ldots, s_{n} \in S \text { with } w=s_{1} \cdots s_{n}\right\} .
\end{aligned}
$$

By definition, $\ell_{S}(1)=0$. If $\ell_{S}(w)=n \geq 1$ and $w=s_{1} \cdots s_{n}$ then the corresponding word $\left(s_{1}, \ldots, s_{n}\right)$ is variously called a reduced expression, a reduced word or a minimal word for g.

Proposition 1.18 ([|Bjorner, Proposition 1.4.2]). Let (W, S) be a Coxeter system with $u, w \in W$. Let $\varepsilon: W \rightarrow \mathbb{Z} / 2 \mathbb{Z}, s \mapsto-1$ be the epimorphism from Lemma 1.6. The length function satisfies the following properties.

1. $\varepsilon(w)=(-1)^{\ell(w)}$.
2. $\ell(u w) \equiv \ell(u)+\ell(w) \bmod 2$.
3. $\ell\left(w^{-1}\right)=\ell(w)$.
4. $|\ell(u)-\ell(w)| \leq \ell(u w) \leq \ell(u)+\ell(w)$.
5. $\ell(w s)=\ell(w) \pm 1$, for all $s \in S$.
6. $\ell\left(u^{-1} w\right)$ is a metric on W, the word metric d_{S}.
7. $d_{S}\left(h w, h w^{\prime}\right)=d_{S}\left(w, w^{\prime}\right)$ for all $h, w, w^{\prime} \in W$.

That is, the left action of W on itself is an action by isometries with respect to the word metric d_{S}.

Proof.

1. Let $w=s_{1} \cdots s_{n}$ be a reduced expression in W. As ε is a homomorphism, there holds $\varepsilon(w)=\varepsilon\left(s_{1}\right) \cdots \varepsilon\left(s_{n}\right)=(-1)^{n}$.
2. Let $u=s_{1} \cdots s_{n}$ and $w=t_{1} \cdots t_{m}$ be reduced expressions in W. Then $(-1)^{\ell(u w)}=\varepsilon(u w)=\varepsilon(u) \varepsilon(w)=(-1)^{\ell(u)}(-1)^{\ell(w)}=(-1)^{\ell(u)+\ell(w)}$ or equivalently, $\ell(u w) \equiv \ell(u)+\ell(w) \bmod 2$.
3. If $w=s_{1} \cdots s_{n}$ is a reduced expression, then $w^{-1}=\left(s_{1} \cdots s_{n}\right)^{-1}=$ $s_{n}^{-1} \cdots s_{1}^{-1}=s_{n} \cdots s_{1}$ as each s_{i} is an involution. Therefore $\ell\left(w^{-1}\right) \leq$ $n=\ell(w)$. Similarly, if $w^{-1}=t_{1} \cdots t_{m}$ is a reduced expression, then $\left(w^{-1}\right)^{-1}=w=t_{m} \cdots t_{1}$, and $\ell(w) \leq m=\ell\left(w^{-1}\right)$.
4. Let $u=s_{1} \cdots s_{n}$ and $w=t_{1} \cdots t_{m}$ be reduced expressions in W. As $u w=s_{1} \cdots s_{n} t_{1} \cdots t_{m}$ there holds $\ell(u w) \leq n+m=\ell(u)+\ell(w)$. In particular, $\ell(u)=\ell\left(\left((u w) w^{-1}\right) \leq \ell(u w)+\ell\left(w^{-1}\right)\right.$, and by 4 . $\mid \ell(u)-$ $\ell(w) \mid \leq \ell(u w)$.
5. By 4. there holds $\ell(w)-1=\ell(w)-\ell(s) \leq \ell(w s) \leq \ell(w)+\ell(s)=$ $\ell(w)+1$. Assume $\ell(w s)=\ell(w)$. Then $w s=s_{1} \cdots s_{n} s=t_{1} \cdots t_{n}$ with $t_{i} \in S$. As w was reduced, we have $\varepsilon(w s)=\varepsilon(w) \varepsilon(s)=(-1)^{n+1}$, but $\varepsilon\left(t_{1} \cdots t_{n}\right)=(-1)^{n}$; a contradiction. Thus $\ell(w s)=\ell(w)-1$ or $\ell(w s)=\ell(w)+1$.
6. Let $d_{S}(u, w):=\ell\left(u^{-1} w\right)$. If $u \neq w$, then $u^{-1} w \neq 1$ and $\ell\left(u^{-1} w\right)>0$ by definition, so d_{S} is positive definite. For symmetry, $d_{S}(w, u)=$ $\ell\left(w^{-1} u\right) \leq \ell\left(w^{-1}\right)+\ell(u)=\ell(w)+\ell(u)$ and $d_{S}(u, w)=\ell\left(u^{-1} w\right) \leq$
$\ell(u)+\ell(w)$ by 3 , thus $d_{S}(w, u)=d_{S}(u, w)$. For the triangle inequality, by 4 there holds $d_{S}(u, w)=\ell\left(u^{-1} z z^{-1} w\right) \leq \ell\left(u^{-1} z\right)+\ell\left(z^{-1} w\right)=$ $d_{S}(u, z)+d_{S}(z, w)$ for any $z \in W$.
7. There holds $d_{S}\left(h w, h w^{\prime}\right)=\ell\left(w^{-1} h^{-1} h w^{\prime}\right)=\ell\left(w^{-1} w^{\prime}\right)=d_{S}\left(w, w^{\prime}\right)$.

1.2.1 The Exchange Condition

Two important combinatorial properties of Coxeter systems are given by the Exchange Condition and Deletion Condition. They will allow us to derive properties of special subgroups of (W, S), or groups W_{T} generated by subsets $T \subset S$. (Section 3)

Theorem 1.19. Suppose a group W is generated by a set of distinct involutions S. Then the following are equivalent:

1. The pair (W, S) is a Coxeter system.
2. The pair (W, S) satisfies the deletion condition:

If $\left(s_{1}, \ldots, s_{k}\right)$ is a word in S with $\ell\left(s_{1} \cdots s_{k}\right)<k$, then there are indicies $i<j$ such that

$$
s_{1} \cdots s_{k}=s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{k}
$$

where \hat{s}_{i} means we delete this letter.
3. Te pair (W, S) satisfies the exchange condition:

If $\left(s_{1}, \ldots, s_{k}\right)$ is a reduced expression for $w \in W$, then for any $s \in S$, either $\ell(s w)=k+1$, or there is an index i such that

$$
w=s s_{1} \cdots \hat{s}_{i} \cdots s_{k}
$$

There are several ways to prove the above theorem. For a purely combinatorial proof, see [Bjorner, Theorem 1.5.1]. For an approach using Cayley graphs, see Thomas, Theorem 2.14]. A purely geometric approach can be achieved with van-Kampen diagrams, where group relations are presented through a certain 2-complex. See Ol'shanskii, 4. Diagrams over groups and Bahls, 1.3.4. The Deletion Condition] for an introduction to this topic. Remark. The equivalence above holds for groups generated by involutions. There exist groups generated by elements of infinite order satisfy the Deletion Condition, or Artin groups. Bah1s, Exercise 17]

We can derive the following properties from the Deletion and Exchange condition:

Corollary 1.20 ([Bjorner, Corollary 1.4.8]). Let (W, S) be a Coxeter system.

1. Any expression $w=s_{1} \cdots s_{k}$ contains a reduced expression for w as a subword, obtainable by deleting an even number of letters.
2. Suppose $w=s_{1} s_{2} \cdots s_{k}=s_{1}^{\prime} s_{2}^{\prime} \cdots s_{k}^{\prime}$ are two reduced expressions. Then, the set of letters appearing in the word $s_{1} s_{2} \cdots s_{k}$ equals the set of letters appearing in $s_{1}^{\prime} s_{2}^{\prime} \cdots s_{k}^{\prime}$.
3. S is a minimal generating set for W. That is, no Coxeter generator can be expressed in terms of the others.

1.3 Finite Coxeter groups

In our later discussion of the Davis complex Σ corresponding to a Coxeter group (W, S), we wish to derive, directly from the Coxeter diagram $\Gamma(W, S)$, if Σ has certain geometric properties. (In particular, if Σ has isolated flats; see Definition 6.7.) The first step to achieve this is classifying the finite, affine and hyperbolic Coxeter groups.

Proposition 1.21 ($\overline{\text { Bjorner, }}$ Exercise 1.4]). Let (W, S) be a finite, irreducible Coxeter system. The Coxeter diagram Γ satisfies the following requirements:

1. Γ is a tree.
2. Γ has at most one vertex of degree 3 and none of higher degree.
3. Γ has at most one marked (i.e., label ≥ 4) edge.
4. If Γ has a degree 3 vertex, then all edges are unmarked.

Example. The triangle group $(3,3,3)$ is an infinite irreducible Coxeter system, with a circuit as Coxeter diagram.

We can prove the above properties, as well as classify all finite Coxeter groups, using the Cosine matrix associated to a Coxeter matrix M. Humphreys, 2.7 Classification of graphs of positive type] We will discuss this together with the affine Coxeter groups.

An alternative, purely combinatorial approach to proving Proposition 1.21 are so-called braid moves. They were used by J. Tits to find a solution to the word problem 1 in Coxeter groups.

[^0]
1.3.1 Braid moves

If $m_{s t}<\infty$ represents the order of $s t$ in a Coxeter system (W, S), then clearly $s t s \cdots=t s t \cdots$ for any word of length $m_{s t}$. The terminology "braid move" comes from the defining relation in the presentation

$$
B_{3}=\left\langle\sigma_{1}, \sigma_{2} \mid \sigma_{1} \sigma_{2} \sigma_{1}=\sigma_{2} \sigma_{1} \sigma_{2}\right\rangle
$$

of the braid group on three strands. See Loeh, Exercise 2.E.26] for details on braid groups.

Definition 1.22 (Thomas, Definition 2.20]). Let W be a group generated by a set of involutions S, and let $m_{s t}$ be the order of $s t, s \neq t$ in W. If $m(s, t)$ is finite, a braid move on a word $w \in W$ swaps a subword (s, t, s, \ldots) containing $m_{s t}$ letters with a subword (t, s, t, \ldots) containing $m_{s t}$ letters.

Theorem 1.23 (Davis, Theorem 3.4.2]). (Tits) Suppose a group W is generated by a set of distinct involutions S and the exchange condition holds.

1. A word $\left(s_{1}, \ldots, s_{k}\right)$ in S is reduced if and only if it cannot be shortened by a sequence of
(a) deleting a subword $(s, s), s \in S$, or
(b) carrying out a braid move.
2. Two reduced expressions in S represent the same group element $w \in W$ if and only if they are related by a finite sequence of braid moves.

Example. Let $\left(W,\left\{s_{1}, s_{2}, s_{3}\right\}\right)$ be the Coxeter system with diagram $\bullet-\bullet-\bullet$. The possible braid moves in W are given by:

$$
\begin{aligned}
\left(s_{1}, s_{3}\right) & \leftrightarrow\left(s_{3}, s_{1}\right) \\
\left(s_{1}, s_{2}, s_{1}\right) & \leftrightarrow\left(s_{2}, s_{1}, s_{2}\right) \\
\left(s_{2}, s_{3}, s_{2}\right) & \leftrightarrow\left(s_{3}, s_{2}, s_{3}\right)
\end{aligned}
$$

Then the word $\left(s_{1} s_{2} s_{3}\right)$ has order 4 , as can be seen by carrying out braid moves:

$$
\begin{aligned}
s_{1} s_{2} \mathbf{S}_{\mathbf{3}} \mathbf{S}_{\mathbf{1}} s_{2} s_{3} s_{1} s_{2} s_{3} & \rightarrow \mathbf{s}_{\mathbf{1}} \mathbf{S}_{\mathbf{2}} \mathbf{s}_{\mathbf{1}} \mathbf{s}_{\mathbf{3}} \mathbf{S}_{\mathbf{2}} \mathbf{S}_{\mathbf{3}} s_{1} s_{2} s_{3} \\
& \rightarrow s_{2} s_{1} \underbrace{s_{2} s_{2}}_{=1} s_{3} s_{2} s_{1} s_{2} s_{3} \\
& \rightarrow \cdots \\
& \rightarrow \underbrace{s_{2} s_{2}}_{=1} s_{3} s_{2} s_{1} \\
\Leftrightarrow\left(s_{1} s_{2} s_{3}\right)^{4} & =s_{3} s_{2} s_{1} s_{1} s_{2} s_{3}=1
\end{aligned}
$$

For illustrative purposes, we use braid moves to show that for a finite, irreducible Coxeter system, the diagram $\Gamma(W, S)$ is a tree. The idea is to find an element of infinite order. The other properties in Proposition 1.21 can be proved similarly.

Proof of Proposition 1.21. 1. Let (W, S) be a finite and irreducible Coxeter system. By definition, $\Gamma(W, S)$ is connected. Assume by contradiction that Γ contains a circuit $(i, i+1, \ldots, i+n), n \geq 2$. Assume the element $w:=$ $s_{i} s_{i+1} \cdots s_{i+n}$ is of finite order. Then there is some $m \in \mathbb{N}$ such that $w^{m}=1$. The possible braid moves in W are given by:

$$
\left(s_{j}, s_{j+1}, s_{j}, \cdots\right) \leftrightarrow\left(s_{j+1}, s_{j}, s_{j+1}, \cdots\right)
$$

for subwords with $m_{s_{j} s_{j+1}}$ letters. By assumption, $s_{i} s_{i+k} \neq s_{i+k} s_{i}$ for all $k \in \mathbb{N}$ (otherwise $m\left(s_{i}, s_{i+k}\right)=2$ and s_{i}, s_{i+k} are not connected by an edge). Thus we can perform no braid move on the word w^{m}. In particular, $\ell\left(w^{m}\right)>1$; a contradiction.

1.4 Affine Coxeter groups

For the sake of brevity, we consider affine Coxeter groups as (cocompact) Euclidean reflection groups generated by affine transformations in the Euclidean space $\mathbb{E}^{n} \sqrt[2]{2}$ We first recall some results on group actions.

1.4.1 Geometric actions

Coxeter groups are defined as groups with a certain finite presentation. It is known that every finitely presented group acts geometrically (that is, properly and cocompactly by isometries) on some simply-connected, geodesic space. The Davis complex is an example of such a space. Reversely, every group with such an action is finitely presented. [Bridson, §8.11]

Definition 1.24 ([Davis, Definition 5.1.5]). Suppose G is discrete. A G action on a Hausdorff space Y is proper (or properly discontinuous) if the following three conditions hold.

1. Y / G is Hausdorff.
2. For each $y \in Y$, the isotropy subgroup $G_{y}=\{g \in G \mid g y=y\}$ is finite.
3. Each $y \in Y$ has a G_{y}-stable neighborhood U_{y} such that $g U_{y} \cap U_{y}=\emptyset$ for all $g \in G-G_{y}$.
[^1]Definition 1.25. Let G be a group acting on a topological space X. The action is cocompact if the quotient space $G \backslash X$ is compact with respect to the quotient topology.

Definition 1.26. Suppose a group G acts on a topological space X by homeomorphisms. Write $G x$ for the G-orbit of the point $x \in X$. A fundamental domain is a closed, connected subset C of X such that $G x \cap C \neq \emptyset$ for every $x \in X$, and $G x \cap C=\{x\}$ for every x in the interior of C. A fundamental domain C is strict if $G x \cap C=\{x\}$ for every $x \in C$, that is, C contains exactly one point from each G-orbit.

Example 1.27 ([Thomas, Example 1.8]). The closed interval [0, 1$]$ is a strict fundamental domain for the action of D_{∞} on the real line. (Example 1.8) Any interval $[n, n+1]$, where $n \in \mathbb{Z}$, is also a strict fundamental domain for this action.

1.4.2 Geometric reflection groups

Theorem 1.28 ([Thomas, Theorem 1.9]). Let $P=P^{n}$ be a simple convex polytope in \mathbb{K}^{n}, where $n \geq 2$ and $\mathbb{K}^{n}=\mathbb{S}^{n}$, \mathbb{E}^{n} or \mathbb{H}^{n}. Let $\left\{F_{i}\right\}_{i \in I}$ be the collection of codimension-1 faces of P^{n}, with each face F_{i} supported by the hyperplane \mathcal{H}_{i}.

Suppose that for all $i \neq j$, if $F_{i} \cap F_{j} \neq \emptyset$ then the dihedral angle between F_{i} and F_{j} ist $\frac{\pi}{m_{i j}}$ for some integer $m_{i j} \geq 2$. Put $m_{i i}=1$ for every $i \in I$, and $m_{i j}=\infty$ if $F_{i} \cap F_{j}=\emptyset$.

For each $i \in I$, let s_{i} be the isometric reflection of \mathbb{X}^{n} across the hyperplane \mathcal{H}_{i}. Let W be the group generated by the set of reflections $\left\{s_{i}\right\}_{i \in I}$. Then:

1. The group W has presentation

$$
W \cong\left\langle s_{i} \mid\left(s_{i} s_{j}\right)^{m_{i j}}=1 \forall i, j \in I\right\rangle
$$

2. The group W is a discrete subgroup of $\operatorname{Isom}\left(\mathbb{K}^{n}\right)$.
3. The convex polytope P is a strict fundamental domain for the action of W on \mathbb{X}^{n}, and the action of W induces a tesselation of \mathbb{X}^{n} by copies of P.

Example 1.29. For more examples, see Thomas, pp. 10-15].

- If P is the closed interval $[0,1]$, then W is the infinite dihedral group D_{∞}.
- If P is a triangle with vertex angles $\frac{\pi}{p}, \frac{\pi}{q}$ and $\frac{\pi}{r}, W$ is the triangle group (p, q, r).
- There is a convex polytope $P \subset \Vdash^{3}$ which is a dodecahedron with all dihedral angles $\frac{\pi}{2}$, hence a hyperbolic reflection group W generated by the reflections in the sides of P.

We can give a presentation of W as follows. The dodecahedron P has 12 sides, thus $S=\left\{s_{1}, \ldots, s_{12}\right\}$. Each face F_{i} of P has precisely 5 adjacent faces $F_{j_{1}}, \ldots, F_{j_{5}}$. (Compare Figure 4.) By Theorem 1.28 , it follows that $m_{i j_{k}}=2$ for $k \in\{1, \ldots, 5\}$ (the intersection $F_{i} \cap F_{j_{k}}$ is an edge, thus non-empty), and $m_{i j}=\infty$ otherwise (F_{i} and F_{j} are not adjacent, or $\left.F_{i} \cap F_{j}=\emptyset\right)$.

Figure 3: Tiling of \uplus^{3} by right-angled dodecahedra.

Definition 1.30. A group W is a geometric reflection group if W is either a finite dihedral group, an infinite dihedral group or is as in the statement of Theorem 1.28. A geometric reflection group W acting on X^{n} is spherical, Euclidean or hyperbolic as \mathbb{X}^{n} is \mathbb{S}^{n}, \mathbb{E}^{n} or \mathbb{H}^{n} respectively. A group W is an affine Coxeter group if W is an Euclidean $\left(\mathbb{K}^{n}=\mathbb{E}^{n}\right)$ geometric reflection group.

1.4.3 Cosine matrix

We turn to the classification of affine Coxeter groups (Euclidean reflection groups) and hyperbolic reflection groups.

Figure 4: Example Schlegel diagram for P. Each face has 5 adjacent faces.

Definition 1.31. Suppose $M=\left(m_{i j}\right)$ is a Coxeter matrix on a set I. The cosine matrix associated to M is the $I \times I$ matrix $\left(c_{i j}\right)$ defined by

$$
c_{i j}=-\cos \frac{\pi}{m_{i j}}
$$

When $m_{i j}=\infty$ we interpret $\frac{\pi}{\infty}$ to be 0 , and $-\cos \frac{\pi}{\infty}=-\cos (0)=-1$. Note that all diagonal entries of $\left(c_{i j}\right)$ are $-\cos \frac{\pi}{1}=1$.

Definition 1.32. Let $A=\left(a_{i j}\right)$ be a square $n \times n$ matrix. The k-th principal submatrix of A is the matrix obtained by deleting the k-th row and k-th column of A.

Definition 1.33. Let $A=\left(a_{i j}\right)$ be a square $n \times n$ matrix. A is reducible (or decomposable) if there is a nontrivial partition of the index set as $\{1, \ldots, n\}=I \cup J$, so that $a_{i j}=a_{j i}=0$ whenever $i \in I, j \in J$. Otherwise, it is irreducible (or indecomposable).

Theorem 1.34 (Davis, Theorem 6.8.12]). Let $M=\left(m_{i j}\right)$ be a Coxeter matrix over I, W the associated Coxeter group, and $C=\left(c_{i j}\right)$ the associated cosine matrix. Suppose that no $m_{i j}$ is ∞. Then:

1. W can be represented as a spherical reflection group generated by the reflections across the faces of a spherical simplex if and only if C is positive definite.
2. Suppose, in addition, that M is irreducible. Then W can be represented as a Euclidean reflection group generated by the reflections across the faces of a Euclidean simplex if and only if C is positive semidefinite of corank 1.
3. W can be represented as a hyperbolic reflection group generated by the reflections across the faces of a hyperbolic simplex if and only if C is
nondegenerate of type $(n, 1)$ and each principal submatrix is positive definite.

We can restate the classification of finite Coxeter groups in terms of the first property.

Theorem 1.35 (Davis, 6.12.9]). Suppose $M=\left(m_{i j}\right)$ is a Coxeter matrix on a set I, that $\left(c_{i j}\right)$ is its associated cosine matrix, and that (W, S) is its associated Coxeter system. Then the following statements are equivalent:

1. W is a reflection group on $\mathbb{S}^{n}, n=|I|-1$, so that the elements of S are represented as the reflections across the codimension-one faces of a spherical simplex σ.
2. $\left(c_{i j}\right)$ is positive definite.
3. W is finite.

1.5 Hyperbolic Coxeter groups

Let W be a hyperbolic reflection group where the convex polytope P is a simplex. Such groups exist only in ranks 3 to 10 , and there are only finitely many in each of ranks 4 to 10 . If the action of W on \mathbb{H}^{n} is cocompact (W is a compact hyperbolic group), such groups exist only in ranks 3,4 and 5 . Humphreys, 6.9 List of hyperbolic Coxeter groups]

The difference between compact and non-compact hyperbolic groups can be characterized through the Coxeter diagram: if for a Coxeter system (W, S) we remove a vertex (representing a generator $s \in S$) in the diagram $\Gamma(W, S)$, then the resulting diagram either represents a finite (in the compact case) or an affine Coxeter group (in the non-compact case). Humphreys, 6.8 Hyperbolic Coxeter groups|This leads us to the following definition:

Definition 1.36 (Caprace]). Let (W, S) be a Coxeter system (with S finite). We say that J is minimal hyperbolic if it is non-spherical and non-affine, but every proper subset is spherical or irreducible affine.

2 The Tits representation

The Tits representation is a commonly used tool in the theory of Coxeter groups. It allows us to easily verify the order of generators in Coxeter groups, derive properties of special subgroups, and helps define a metric on the Davis complex. It may also be used as an aid in the classification of finite Coxeter groups.

Theorem 2.1. Let (W, S) be a Coxeter system. Let $V:=\bigoplus_{s \in S} \mathbb{R} e_{s}$ be an $|S|$-dimensional real vector space with canonical basis $\left\{e_{s}\right\}_{s \in S}$. Define a symmetric bilinear form B on V by:

$$
B\left(e_{s}, e_{t}\right)= \begin{cases}-\cos \frac{\pi}{m_{s t}} & m_{s t} \neq \infty \\ -1 & m_{s t}=\infty\end{cases}
$$

There exists a faithful action (the Tits representation or canonical representation)

$$
\begin{aligned}
\sigma: W & \rightarrow G L(V) \\
s & \mapsto\left(\sigma_{s}: \lambda \mapsto \lambda-2 B\left(e_{s}, \lambda\right) e_{s}\right)
\end{aligned}
$$

where $s \in S$. The map σ_{s} represents the reflection across e_{s} to the hyperplane

$$
H_{s}:=\left\{\lambda \in V \mid B\left(e_{s}, \lambda\right)=0\right\}
$$

and has the following properties:

1. σ_{s} is linear with fixed set H_{s}.
2. σ_{s} preserves the bilinear form B, that is $B\left(\sigma_{s}(\lambda), \sigma_{s}(\mu)\right)=B(\lambda, \mu)$ for all $\lambda, \mu \in V$.
3. $\sigma_{s}\left(e_{s}\right)=-e_{s}$.
4. $\sigma_{s}^{2}=\mathrm{id}$ for each $s \in S$.
5. $\sigma_{s} \sigma_{t}$ has order $m_{s t}$ for all distinct $s, t \in S$.

Proof. (Sketch) Properties 1 to 4 are clear. To determine the order of $\sigma_{s} \sigma_{t}$, we distinguish the cases $m_{s t}<\infty$ and $m_{s t}=\infty$ (by definition of B). Let $V_{s t}:=\mathbb{R} e_{s} \oplus \mathbb{R} e_{t}$. The bilinear form B is symmetric, and B is positive definite on $V_{s t}$ if and only if $m_{s t}<\infty$. In this case, $\left(V_{s t},\left.B\right|_{V_{s t}}\right)$ is an Euclidean plane, and the subgroup of $G L(V)$ generated by σ_{s} and σ_{t} is a dihedral group of order $2 m_{s t}$. Elements, V.4.2] When $m_{s t}=\infty, B$ is positive semidefinite on $V_{s t}$, but $\sigma_{s} \sigma_{t}\left(e_{s}\right)=e_{s}+2\left(e_{s}+e_{t}\right)$; by induction, $\sigma_{s} \sigma_{t}$ has infinite order on $V_{s t}$.

With $\sigma_{s}^{2}=\mathrm{id}$ and $\left(\sigma_{s} \sigma_{t}\right)^{m_{s t}}=\mathrm{id}$, we extend $S \rightarrow G L(V), s \mapsto \sigma_{s}$ to a homomorphism $\sigma: W \rightarrow G L(V)$ by setting $\sigma(w):=\sigma_{s_{1}} \cdots \sigma_{s_{n}}$ for $w=s_{1} \cdots s_{n} \in W$.

It remains to show that the action σ is faithful. We proceed by considering the dual representation $\sigma^{*}: W \rightarrow G L\left(V^{*}\right)$, given by

$$
\left(\sigma^{*}(w)(\varphi)\right)(v)=\varphi\left(\sigma\left(w^{-1}\right)(v)\right)
$$

with $\varphi \in V^{*}, w \in W$ and $v \in V$. If the dual σ^{*} is faithful, then σ is also faithful. The key to proving this is considering chambers

$$
C:=\left\{\varphi \in V^{*} \mid \varphi\left(e_{i}\right) \geq 0 \forall i \in I\right\},
$$

and their interiors \dot{C}. A theorem by Tits then says that if $\sigma^{*}(w) \dot{C} \cap \dot{C}$ is nonempty, then $w=1$. The claim then follows: if $\sigma^{*}(w)=1$, then $\sigma^{*}(w)(C)=C$, or $w=1$. The proof of the theorem uses the length ℓ of $w \in W$ (relative to the generating set S). See Elements, V.4.4] for a full description. For a combinatorial view on the dual representation σ^{*}, see Bjorner, 4.3 The numbers game].

Figure 5: The case $m_{s t}<\infty$
An alternative way in proving that the Tits representation is faithful is so-called root systems. [Suter, Corollary 4.7]

We are now able to prove the remaining properties in Proposition 1.5 .
Proof of 1.5. We have already shown that each generator $s \in S$ is an involution. Denote by w_{s} the image of s in W. The composition $s \mapsto w_{s} \mapsto \sigma_{s}$ is injective by Theorem 2.1 .5 (if $s \neq t$, then $\sigma_{s} \sigma_{t}$ has order ≥ 2), thus $s \mapsto w_{s}$ is also injective. This shows that each $s \in S$ is distinct in W.

It remains to show that each st has order $m_{s t}$. An element $w_{s t}$ has at most order $m_{s t}$, and $\sigma_{s t}$ has precisely order $m_{s t}$. It follows that $w_{s t}$ has precisely order $m_{s t}$, which shows the claim.

Remark 2.2. The matrix for the bilinear form $B\left(e_{s}, e_{t}\right)_{s, t \in S}$ is precisely the Coxeter matrix C defined in Section 1.4.3. In particular, a Coxeter system (W, S) of finite rank is finite, if and only if the canonical bilinear form is positive-definite.

2.1 Coxeter polytopes

The Tits representation gives us a first geometric realisation of (finite) Coxeter groups, the Coxeter polytopes. Later on, we will paste together these polytopes to get a piecewise Euclidean geometric realisation of an arbitrary Coxeter group, called the Davis complex.

Let (W, S) be a finite Coxeter system with $|S|=n$. By Remark 2.2 , we can then identify V^{*} with Euclidean space \mathbb{E}^{n}, and the chamber C is a closed Euclidean simplicial sector cut out by hyperplanes. Choose a point x in the interior of the chamber C. We call such an x a generic point $(x$ is determined by specifying its distance to each of the bounding hyperplanes, i.e. by specifying an element of $(0, \infty)^{n}$.

Notation. From here on, write $w \mathscr{C}$ for $\sigma^{*}(w) \dot{C}, w \in W$.
Definition 2.3 (Davis, Definition 7.3.1]). Let (W, S) be a finite Coxeter system. A Coxeter polytope (or Coxeter cell) associated to W is the convex polytope C_{W} defined as the convex hull of $W x$ (a generic W-orbit).
Lemma 2.4. Let C be chamber associated to a finite Coxeter system (W, S). Then W acts simply transitively on the set $W \dot{C}=\{w \dot{C} \mid w \in W\}$. In particular, for a generic point $x \in \mathscr{C},|W x|=|W|$.
Proof. The action of W is transitive by construction. It remains to show that it is free. Assume there are $w \neq w^{\prime}$ in W such that $w \stackrel{\circ}{C}=w^{\prime} \dot{C}$. Then $w w^{\prime-1} \dot{C}=w^{\prime} w^{\prime-1} \dot{C}=\dot{C}$, in particular, $w w^{\prime-1} \dot{C} \cap \dot{C} \neq \emptyset$. By Tits, $w w^{\prime-1}=1$; a contradiction.

Example 2.5.

1. If $W=\mathbb{Z}_{2}$, then C_{W} is the interval $[-x, x]$.
2. If $W=D_{m}$, then C is a $2 m$-gon. (It is regular if the generic point x is equidistant from the two rays which bound the fundamental sector containing x.)
3. If (W, S) is reducible and decomposes as $W=W_{1} \times W_{2}$, then C_{W} decomposes as $C_{W}=C_{W_{1}} \times C_{W_{2}}$. In particular, if $W=\left(\mathbb{Z}_{2}\right)^{n}$, then C_{W} is a product of intervals. (If x is equidistant from the bounding hyperplanes, then C_{W} is a regular n-cube.)

Figure 6: A Coxeter polytope for $W \cong D_{6}$

Figure 7: A Coxeter polytope for $W \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$

3 Special subgroups

We now turn to subgroups of Coxeter groups and state some of their important properties.

Definition 3.1. For $T \subseteq S$, let W_{T} be the subgroup of W generated by the set T. We call subgroups of Coxeter systems (W, S) of this form special subgroups ${ }^{3}$ If the subgroup W_{T} is finite, we call it spherical ${ }_{4}^{4}$

We show the following properties of special subgroups.
 system, and W_{T} resp. $W_{T^{\prime}}$ the subgroups generated by $T \subseteq S$ resp. $T^{\prime} \subseteq S$. There holds:

1. $\left(W_{T}, T\right)$ is a Coxeter system.
2. $\ell_{T}(w)=\ell(w)$ for all $w \in W_{T}$, where $\ell_{T}(w)$ denotes the length function with respect to W_{T}.
3. $W_{T} \cap W_{T^{\prime}}=W_{T \cap T^{\prime}}$.
4. $\left\langle W_{T} \cup W_{T^{\prime}}\right\rangle=W_{T \cup T^{\prime}}$.
5. If $W_{T}=W_{T^{\prime}}$, then $T=T^{\prime}$.

Proof.

1. Humphreys, 5.5 Parabolic subgroups] Let M be the Coxeter matrix associated to the Coxeter system (W, S) with $S=\left\{s_{j}\right\}_{j \in J}$. Let $T=$ $\left\{t_{i}\right\}_{i \in I}, I \subseteq J$ be a subset of S. We define $\left(\widetilde{W_{T}}, \widetilde{T}\right)$ as the Coxeter system associated to the (restricted) Coxeter matrix $\left.M\right|_{J \times J}$, with $\tilde{T}=$ $\{\tilde{t}\}_{j \in J}$ a copy of T.
If $\left(W_{T}, T\right)$ is a Coxeter system, then the epimorphism $\widetilde{W_{T}} \rightarrow W_{T}$ (sending a word $\tilde{t}=\tilde{t}_{1} \cdots \tilde{t}_{n}$ in \widetilde{W}_{T} to an element $t=t_{1} \cdots t_{n}$ in W_{T}) must be an isomorphism.
Let σ_{T} denote the canonical representation for $\widetilde{W_{T}}$ with $V_{T} \subseteq V$ and σ the canonical representation for W. We have the following diagram:

[^2]The right diagram commutes, thus $\left.\sigma\right|_{W_{T}}$ is a monomorphism. The left diagram also commutes, thus it follows that $\widetilde{W_{T}} \rightarrow W_{T}$ is an isomorphism, and that $\left(W_{T}, T\right)$ is a Coxeter system.
2. Let $w \in W_{T}$. Let $w=s_{1} \cdots s_{q}$ with $\ell_{T}(w)=q$ and $s_{1}, \ldots, s_{q} \in T$. By Theorem 1.19, if $\ell(w)<q$ there are indices $i<j$ such that $s_{1} \cdots s_{q}=$ $s_{1} \cdots \hat{s}_{i} \cdots \hat{s}_{j} \cdots s_{k}$. Since all s_{i} were already in T and $\ell_{T}(w)$ is minimal, $\ell(w)=q$ must hold.
3. The inclusion $W_{T \cap T^{\prime}} \subseteq W_{T} \cap W_{T^{\prime}}$ is clear. Conversely, let $w \in W_{T} \cap$ $W_{T^{\prime}}$. Then w has reduced expressions $w=s_{1} \cdots s_{n}, s_{i} \in T$ and $w=t_{1} \cdots t_{m}, t_{j} \in T^{\prime}$ in W_{T} and $W_{T^{\prime}}$, respectively By $2, \ell_{T}(w)=$ $\ell(w)=\ell_{T^{\prime}}(w)$, thus $n=m$. By Corollary 1.20 , the set of letters in $\left(t_{j}\right)$ matches the set of letters in $\left(s_{i}\right)$, and $w=s_{1} \cdots s_{n}, s_{i} \in T \cap T^{\prime}$ is a reduced expression in $W_{T \cap T^{\prime}}$.
4. As every element in $\left\langle T \cup T^{\prime}\right\rangle$ is a finite product of elements in $T \cup T^{\prime}$, the claim follows.
5. Let $T \neq T^{\prime}$ be subsets of S, with $s \in T$ and $s \notin T^{\prime}$. If $s \in W_{T^{\prime}}$, then by 2. there holds $\ell(s)=1=\ell_{T^{\prime}}(s)$, such that $s \in T^{\prime}$. Therefore $s \notin W_{J}$.

Corollary 3.3. Let (W, S) be a Coxeter system. The assignment of W_{I} to I defines a bijective, inclusion-preserving map between the collection of subsets of S and the collection of subgroups W_{I} of W. In particular, the partially ordered set of subsets of S is isomorphic to the partially ordered set of special subgroups of W.

Corollary 3.4 ([Davis, Theorem 4.1.6.(iii)]). Let (W, S) be a Coxeter system. Let T, T^{\prime} be subsets of S and w, w^{\prime} elements of W. Then $w W_{T} \subset w^{\prime} W_{T^{\prime}}$ (resp. $w W_{T}=w^{\prime} W_{T^{\prime}}$) if and only if $w^{-1} w^{\prime} \in W_{T^{\prime}}$ and $T \subset T^{\prime}$ (resp. $\left.T=T^{\prime}\right)$.

Parabolic closure By Proposition 3.2, the subgroup generated by the intersection of subsets $T \cap T^{\prime} \subset S$ is equal to the subgroup $W_{T} \cap W_{T^{\prime}}$. That means we can define the special closure (or parabolic closure) of an arbitrary subset $R \subset W$:

Definition 3.5. Let (W, S) be a Coxeter system, and $R \subset W$ a subset. The special closure of R is defined as the smallest special subgroup of W containing R :

$$
\operatorname{Pc}(R):=\bigcap_{T \subset S, R \subset W_{T}} W_{T} .
$$

3.1 Diagrams for special subgroups

We now consider Coxeter diagrams for special subgroups. The Coxeter diagram for (W_{T}, T) is obtained by removing all nodes in $S \backslash T$ and their incident edges from the diagram for (W, S). Consider paths of shortest length (geodesic paths) joining nodes in T to nodes in $S \backslash T$. The number of edges of such a path defines the distance between these nodes (or ∞ if there is no such path.)

We can make this statement made precise through the set J^{\perp}. Before defining this set, we prove Remark 1.16 .
Remark 3.6. If there is no edge between i and j in the Coxeter diagram, then $m_{i j}=2$ (or $s_{i} s_{j}=s_{j} s_{i}$) by definition. This implies that if i and j are in different connected components of the Coxeter diagram, they commute.
Remark 1.16). If W is reducible with connected components I and J, then W allows a direct product composition:

$$
W_{T} \times W_{T^{\prime}}, \quad T=\left(s_{i}\right)_{i \in I}, \quad T^{\prime}=\left(s_{j}\right)_{j \in J}
$$

where the subgroups W_{T} and $W_{T^{\prime}}$ in W are generated by T and T^{\prime}, respectively.

Proof of Remark 1.16. By assumption, T and T^{\prime} consist of elements in the connected components I and J, respectively. Thus, $T \cap T^{\prime}=\emptyset$ and $T \cup T^{\prime}=$ S. By Proposition 3.2 there then holds:

$$
\begin{aligned}
W_{T} \cap W_{T^{\prime}} & =W_{T \cap T^{\prime}}=W_{\emptyset}=\{1\}, \\
\left\langle W_{T} \cup W_{T^{\prime}}\right\rangle & =W_{T \cup T^{\prime}}=W .
\end{aligned}
$$

Since elements of T and T^{\prime} commute by Remark 3.6, we have $W \cong$ $W_{T} \times W_{T^{\prime}}$.

Definition 3.7. Let (W, S) be a Coxeter group and $T \subset S$ a subset. We define:

$$
J^{\perp}:=(S \backslash T) \cap \mathcal{Z}_{W}\left(W_{T}\right)=\left\{s \in S \backslash T \mid s w=w s, \forall w \in W_{T}\right\},
$$

where $\mathcal{Z}_{W}\left(W_{T}\right)$ denotes the centralizer of W_{T} in W.
Lemma 3.8. Generators $s \in S$ commute with all group elements $w \in W$ if and only if they commute with all generators $t \in S$. It follows that we may rewrite J^{\perp} as:

$$
J^{\perp}=\{s \in S \backslash T \mid s t=t s, \forall t \in T\}
$$

Proof. For the first statement, proceed by induction of the length of w. By Remark 3.6, these are exactly the vertices $s \in S \backslash T$ in the Coxeter diagram with distance >1 to vertices in T.

Figure 8: The Coxeter group E_{6} (vertices of T in blue, vertices of J^{\perp} in red)

4 Cayley graphs

In Section 5.2, we will define the 1-skeleton as the Cayley graph of a the system (W, S). Here, we explain what Cayley graphs are, and how they can be metricized.

Note. For an overview on (combinatorial) graphs, see Groupes, IV. Annexe]. For details on Cayley graphs, see [Loeh, 3. Cayley graphs] or [Thomas, 2.2 Cayley graphs of Coxeter systems].

Definition 4.1. Let G be a group and let $S \subset G$ be a generating set of G. Then the Cayley graph of G with respect to the generating set S is the graph $\operatorname{Cay}(G, S)$ whose set of vertices is G, and whose set of edges is

$$
\left\{\{g, g s\} \mid g \in G, s \in\left(S \cup S^{-1}\right) \backslash\{e\}\right\}
$$

If $s \in S$ is an involution, put a single undirected edge between $g \in G$ and $g s=g s^{-1}$.

Remark 4.2 (Action of G on $\operatorname{Cay}(G, S)$).

1. The word metric d_{S} on G (see Proposition 1.18) extends to the path metric on $\operatorname{Cay}(G, S)$, that is, the metric in which each edge of $\operatorname{Cay}(G, S)$ is a unit interval, and the distance between any two points in the graph is given by the length of a shortest path between them.
2. The group G acts by graph isomorphisms on the Cayley graph Cay (G, S) via left translation:

$$
\begin{aligned}
& G \operatorname{Aut}(\operatorname{Cay}(G, S)) \\
& g \longmapsto(h \mapsto g \cdot h) ;
\end{aligned}
$$

This map is well-defined and a group homomorphism. It is an action by isometries with respect to the path metric.

Example 4.3 (Examples of Cayley graphs).

1. The Cayley graph of $D_{\infty}=\left\langle s_{1}, s_{2} \mid s_{i}^{2}=1\right\rangle$ is the infinite regular tree of degree 2. (That is, an infinite two-sided path.) The same holds for the Cayley graph of $(\mathbb{Z},\{1\})$.
2. The Cayley graph of the additive group $\mathbb{Z} \times \mathbb{Z}$ with respect to the generating set $\{(1,0),(0,1)\}$ looks like the integer lattice in \mathbb{R}^{2}.
3. The Cayley graph of the cyclic group $\mathbb{Z} / 6 \mathbb{Z}$ looks like a cycle graph.
4. The Cayley graph of the free group in two generators is the infinite regular tree of degree 4.
Similarly, the Cayley graph of $D_{\infty} \times D_{\infty} \cong\left(\mathbb{Z}_{2} \rtimes_{\varepsilon} \mathbb{Z}\right)^{2}$ is dual to the induced tesselation of \mathbb{R}^{2} by squares.
5. The Cayley graph of the finite dihedral group D_{6} (with respect to the generating set $S=\left\{s_{1}, s_{2}\right\}$) is a hexagon.
6. The Cayley graph of the $(3,3,3)$ triangle group (with respect to the set of reflections in the sides of an equilateral triangle in \mathbb{R}^{2}) is dual to the induced tesselation of \mathbb{R}^{2}.

Figure 9: The Cayley graph $\operatorname{Cay}\left(\mathbb{Z}^{2},\{(1,0),(0,1)\}\right)$
Remark 4.4 (Properties of Cayley graphs).

- Cayley graphs are connected. Indeed, every vertex g can be reached by the vertex of the neutral element by a path corresponding to a word of minimal length.
- If Cayley graphs are isomorphic as graphs, their corresponding groups are not isomorphic in general. Loeh, Outlook 3.2.4] (In Example 4.3, both $\operatorname{Cay}\left(D_{\infty},\left\{s_{1}, s_{2}\right\}\right)$ and $\operatorname{Cay}(\mathbb{Z},\{1\})$ are a line, but \mathbb{Z} and $D_{\infty} \cong$ $\mathbb{Z}_{2} \rtimes_{\varepsilon} \mathbb{Z}$ are not isomorphic.)
- The Cayley graph $\operatorname{Cay}\left(F_{S}, S\right)$ of a free group F_{S} is a tree. (Since each element of F_{S} can be written uniquely as a reduced word in $S \cup S^{-1}$, there is a unique edge path connecting any given element to 1 . Hence, $\operatorname{Cay}\left(F_{S}, S\right)$ contains no circuits.)
The converse is not true in general. (In Example 4.3, $\operatorname{Cay}(\mathbb{Z},\{1\})$ is a tree, but \mathbb{Z} is not a free group.)

By definition, there holds:

- Every vertex has the same number $\left|\left(S \cup S^{-1}\right) \backslash\{e\}\right|$ of neighbours.

Figure 10: The Cayley graph Cay $\left(\left\langle s_{1}, s_{2} \mid\right\rangle,\left\{s_{1}, s_{2}\right\}\right)$

- Cayley graphs are locally finite (that is, every vertex has only finitely many neighbours) if and only if the generating set S is finite.

Definition 4.5. A graph is simple if the end points of each edge are distinct vertices (that is, the graph has no loops), and there is at most one edge between any pair of vertices (that is, the graph has no multiple edges).

Lemma 4.6. Let (W, S) be a Coxeter system. Then $\operatorname{Cay}(W, S)$ is a connected simple graph.

Proof. It remains to show that $\operatorname{Cay}(W, S)$ is simple. By Proposition 1.5.1, S consists of involutions, hence $1 \notin S$. It follows that $\operatorname{Cay}(W, S)$ has no loops.

By our convention, the edges of $\operatorname{Cay}(W, S)$ are undirected edges of the form $\{w, w s\}$ for $w \in W$ and $s \in S$. By Proposition 1.5 2, the elements of S are pairwise distinct group elements in W, so there is at most one edge between any two vertices of $\operatorname{Cay}(W, S)$.

4.1 Products in the Cayley graph

Recall that the direct product group $\prod_{i \in I} G_{i}$ of $\left(G_{i}\right)_{i \in I}$ is the group whose underlying set is the cartesian product $\prod_{i \in I} G_{i}$, and whose composition is given by pointwise composition $\left(\left(g_{i}\right)_{i \in I},\left(h_{i}\right)_{i \in I}\right) \mapsto\left(g_{i} \cdot h_{i}\right)_{i \in I}$.

The aim of this section is to show that the Cayley graph of a direct product of groups $\prod_{i \in I}\left(G_{i}, S_{i}\right)$ is the Cartesian product of the Cayley graphs

$\operatorname{Cay}(\mathbb{Z},\{1\})$

$$
\operatorname{Cay}(\mathbb{Z},\{2,3\})
$$

Figure 11: Cayley graphs of the additive group \mathbb{Z}

Cay $\left(G_{i}, S_{i}\right)_{i \in I}$. We follow 【Imrich, 1.4 The Cartesian product] for basic terms and definitions.

Definition 4.7. The Cartesian product $\Gamma \square \Gamma^{\prime}$ of two graphs Γ and Γ^{\prime} is defined on the Cartesian product $V(\Gamma) \times V\left(\Gamma^{\prime}\right)$ of the vertex set of the factors. The set of edges $E\left(\Gamma \square \Gamma^{\prime}\right)$ is given by:

$$
\begin{aligned}
E\left(\Gamma \square \Gamma^{\prime}\right)=\{\{(u, v),(x, y)\} & \mid u=x,\{v, y\} \in E\left(\Gamma^{\prime}\right), \text { or }, \\
& \{u, x\} \in E(\Gamma), v=y\} .
\end{aligned}
$$

Since the Cartesian product of graphs is associative (that is, $\Gamma_{1} \square\left(\Gamma_{2} \square \Gamma_{3}\right) \cong$ $\left.\left(\Gamma_{1} \square \Gamma_{2}\right) \square \Gamma_{3}\right)$ Imrich, Proposition 1.36], it suffices to consider products of two graphs.

Lemma 4.8. Let (W, S) and $\left(W^{\prime}, S^{\prime}\right)$ be Coxeter systems with corresponding Cayley graphs Cay (W, S) and $\operatorname{Cay}\left(W^{\prime}, S^{\prime}\right)$.

Then the Cartesian product $\operatorname{Cay}(W, S) \square \operatorname{Cay}\left(W^{\prime}, S^{\prime}\right)$ is given by the Cayley graph of the product ($W \times W^{\prime}, S \sqcup S^{\prime}$), where $S \sqcup S^{\prime} \cong\{1\} \times S^{\prime} \cup S \times\{1\}$.

Proof. First note that $S \sqcup S^{\prime}$ is a generating set for the group $W \times W^{\prime}$, for W and W^{\prime} are generated by S and S^{\prime} respectively, and the composition in $W \times W^{\prime}$ is pointwise.

By definition, the vertex set of $\operatorname{Cay}(W, S) \square \operatorname{Cay}\left(W^{\prime}, S^{\prime}\right)$ is given by:

$$
\begin{aligned}
V(\operatorname{Cay}(W, S)) \times V\left(\operatorname{Cay}\left(W^{\prime}, S^{\prime}\right)\right) & =W \times W^{\prime} \\
& =V\left(\operatorname{Cay}\left(W \times W^{\prime}, S \sqcup S^{\prime}\right) .\right.
\end{aligned}
$$

The edge set of $\operatorname{Cay}(W, S) \square \operatorname{Cay}\left(W^{\prime}, S^{\prime}\right)$ is given by:

$$
\begin{aligned}
\{(w, v),(w \cdot s, v) & =(w \cdot s, v \cdot 1)\}, & w, v \in W, s \in S, \\
\left\{\left(w^{\prime}, v^{\prime}\right),\left(w^{\prime}, v^{\prime} \cdot s^{\prime}\right)\right. & \left.=\left(w^{\prime} \cdot 1, v^{\prime} \cdot s^{\prime}\right)\right\}, & w^{\prime}, v^{\prime} \in W^{\prime}, s^{\prime} \in S^{\prime} .
\end{aligned}
$$

These are precisely the edges of $\operatorname{Cay}\left(W \times W^{\prime},\{1\} \times S^{\prime} \cup S \times\{1\}\right)$.

Example 4.9. Let C_{6} denote the cyclic graph in 6 vertices, K_{2} the complete graph on two vertices (an edge), $K_{1,4}$ the complete bipartite graph on 1 and 4 vertices, and P_{3} the path on 3 vertices. Then the products $C_{6} \square K_{2}$ and $K_{1,4} \square P_{3}$ are given as in Figure 12.

Figure 12: The products $C_{6} \square K_{2}$ and $K_{1,4} \square P_{3}$

5 The Davis complex

The Davis complex gives an important class of examples for $\operatorname{CAT}(0)$ spaces. Each Coxeter system (W, S) has a corresponding Davis complex Σ on which it acts. There are three (up to homeomorphism) equivalent definitions of the Davis complex, which may be used to demonstrate different properties; here we will focus on the definition as $C W$ complex.

Let (W, S) be a Coxeter system. The Davis complex may be defined as follows:

- As a basic construction, a certain quotient space.
- As geometric realisation of a partially ordered set.
- As a CW-complex.

The last definition is efficient, in the sense that that there are no "topologically unimportant" cells. We introduce the Davis complex as a partially ordered set and as a CW-complex. For details on the basic construction, see [Davis, 5. The Basic Construction].

We show that Σ is a complete CAT(0) space (or Hadamard space) using the following properties:

1. Σ is connected.
2. Σ is simply connected.
3. Σ is a complete geodesic space. For this we will use the Tits representation of a Coxeter group to define an appropriate metric.
4. Σ is locally $\operatorname{CAT}(0)$, i.e. of curvature 0 .

As Σ is a complete $\operatorname{CAT}(0)$ space, we have in particular: (see [Davis, §12.3.4])

1. Σ is contractible.
2. The word and conjugation problems are solvable for W. (Recall that the conjugation problem for a finitely generated group G asks for the existence of an algorithm which can determine if two elements in G are conjugates. The word problem considers if any given element in G is the neutral element; see Problem 1.1.)

5.1 Geometric realization of a poset

In this section, we introduce the notion of a geometric realization of a partially ordered set, a special case of the (standard) geometric realization of an abstract simplicial complex. This will give us the first definition of the

Davis complex Σ for a Coxeter system (W, S). For details on simplicial complexes and partially ordered sets, see [Davis, Appendix A] or Abramenko, Appendix A.1]. For the closely related notion of the nerve, see [Davis, 7.1 The Nerve of a Coxeter System].

Definition 5.1. Given a partially ordered set (or poset) \mathcal{P} and en element $p \in \mathcal{P}$, put

$$
\mathcal{P}_{\leq p}:=\{x \in \mathcal{P} \mid x \leq p\}
$$

Define $\mathcal{P}_{\geq p}, \mathcal{P}_{<p}$ and $\mathcal{P}_{>p}$ similarly.

Example 5.2.

 the empty face), partially ordered by inclusion. Let $\mathcal{F}(P)=\tilde{\mathcal{F}}(P)_{>\emptyset}$ denote the poset of nonempty faces. If Δ^{n} is an n-simplex, then $\tilde{\mathcal{F}}\left(\Delta^{n}\right) \cong \mathcal{P}\left(I_{n+1}\right)$, where $\mathcal{P}\left(I_{n+1}\right)$ denotes the power set of $I_{n+1}=$ $\{1, \ldots, n+1\}$.

- Let (W, S) be a Coxeter system. Recall that a subset T of S is spherical if W_{T} is a finite subgroup of W. Let $\mathcal{S}(W, S)$ (or \mathcal{S}) denote the poset of all spherical subsets of S, ordered by inclusion.

Definition 5.3. An abstract simplicial complex consists of a set V, possibly infinite, called the vertex set, and a collection X of finite subsets of V, such that

1. $\{v\} \in X$ for all $v \in V$; and
2. if $\Delta \in X$ and $\Delta^{\prime} \subseteq \Delta$, then $\Delta^{\prime} \in X$.

An element of X is called a simplex. If Δ is a simplex and $\Delta^{\prime} \subsetneq \Delta$, then Δ^{\prime} is a face of Δ. The dimension of a simplex Δ is $\operatorname{dim} \Delta=\operatorname{Card}(\Delta)-1$, and a k-simplex is a simplex of dimension k. A 0 -simplex is sometimes called a vertex and a 1 -simplex is sometimes called an edge.

Example 5.4 ([Davis, Example 7.1.5]). Let (W, S) be a Coxeter system and $\mathcal{S}(W, S)$ the poset of spherical subsets. Suppose (W, S) decomposes as

$$
(W, S)=\left(W_{1} \times W_{2}, S_{1} \sqcup S_{2}\right)
$$

where the elements of S_{1} commute with those of S_{2}. A subset $T=T_{1} \cup T_{2}$, $T_{i} \subset S_{i}$, is spherical if and only if T_{1} and T_{2} are both spherical. It follows that

$$
\mathcal{S}(W, S) \cong \mathcal{S}\left(W_{1}, S_{1}\right) \times \mathcal{S}\left(W_{2}, S_{2}\right)
$$

Definition 5.5. A convex cell complex is a collection Λ of convex polytopes in an affine space \mathbb{A} such that

1. if $P \in \Lambda$ and F is a face of P, then $F \in \Lambda$ and
2. for any two polytopes P and Q in Λ, either $P \cap Q=\emptyset$ or $P \cap Q$ is a common face of both polytopes.

The elements of Λ are called cells. A subset Λ^{\prime} of Λ is a subcomplex if it satisfies (1). If each cell of Λ is a simplex, then Λ is a simplicial complex. The underlying space of Λ is, as a set, given by

$$
X(\Lambda):=\bigcup_{P \in \Lambda} P .
$$

If Λ is locally finite (that is, each cell in Λ is a face of only finitely many other cells in Λ), then $X(\Lambda)$ is given the induced topology as a subspace of A. Otherwise, it is topologized as the direct limit of the underlying spaces of its finite subcomplexes.

Definition 5.6. A space X is a polyhedron if it is homeomorphic to (the underlying space of) a convex cell complex.

Example 5.7. Given a convex polytope P, the set of all its nonempty faces is a convex cell complex (also denoted as P).

The boundary complex ∂P consists of all proper faces. If P is n-dimensional, then the underlying space of P is an n-disk and the underlying space of ∂P is an $(n-1)$-sphere.

Definition 5.8. The standard n-simplex Δ^{n} is the convex hull of the standard basis e_{1}, \ldots, e_{n+1} in \mathbb{R}^{n+1}, that is,

$$
\Delta^{n}=\left\{\sum_{i=1}^{n+1} \lambda_{i} e_{i} \mid \lambda_{i} \geq 0, \sum_{i=1}^{n+1} \lambda_{i}=1\right\}
$$

of the standard basis e_{1}, \ldots, e_{n+1} in \mathbb{R}^{n+1}.
Let X be an abstract simplicial complex with vertex set V. We associate to X a convex cell complex $\operatorname{Geom}(X)$ by identifying each n-simplex Δ in X with the standard n-simplex Δ^{n}; this gives the n-cells in the associated simplicial cell complex. We call Geom (X) the standard geometric realisation of X.

Definition 5.9. Let \mathcal{P} be a partially ordered set. A chain is a totally ordered subset of \mathcal{P}. The flag complex (or order complex) $\operatorname{Flag}(\mathcal{P})$ of \mathcal{P} is the abstract simplicial complex of all finite chains in \mathcal{P}.

The geometric realization of a poset \mathcal{P} is the geometric realization of $\operatorname{Flag}(\mathcal{P})$,

$$
|\mathcal{P}|:=\operatorname{Geom}(\operatorname{Flag}(\mathcal{P})) .
$$

That is, we map finite chains in $|\mathcal{P}|$ with $(n+1)$ elements to an n-simplex, and the elements of \mathcal{P} are vertices of $|\mathcal{P}|$.

Definition 5.10. Let K denote the geometric realization of the poset \mathcal{S}. Let $W \mathcal{S}$ denote the poset

$$
W \mathcal{S}:=\bigsqcup_{T \in \mathcal{S}} W / W_{T}=\left\{w W_{T} \mid w \in W, T \subseteq S \text { spherical }\right\}
$$

partially ordered by inclusion $A \subseteq B$. (Note that the poset $W \mathcal{S}$ is a disjoint union: by Corollary 3.4, $w W_{T}=w^{\prime} W_{T^{\prime}}$ if and only if $T=T^{\prime}$ and $\left.w^{-1} w^{\prime} \in W_{T^{\prime}}.\right)$

Definition 5.11. The Davis complex Σ is the geometric realization $|W \mathcal{S}|$. The group W acts on the poset $W \mathcal{S}$ by

$$
\begin{aligned}
W \times W \mathcal{S} & \longrightarrow W \mathcal{S} \\
\left(w, w^{\prime} W_{T}\right) & \longmapsto\left(w w^{\prime}\right) W_{T}
\end{aligned}
$$

which induces an action of W on the geometric realization $\Sigma=|W \mathcal{S}|$:

$$
\begin{aligned}
W \times|W \mathcal{S}| & \longrightarrow|W \mathcal{S}| \\
\left(w, \sum_{T_{i} \subseteq T} \lambda_{i}\left(w^{\prime} W_{T_{i}}\right)\right) & \longmapsto \sum_{T_{i} \subseteq T} \lambda_{i}\left(w w^{\prime} W_{T_{i}}\right) .
\end{aligned}
$$

Remark 5.12. The projection $W \mathcal{S} \rightarrow \mathcal{S}$ given by $w W_{T} \rightarrow T$ induces a simplicial projection $\pi: \Sigma \rightarrow K$. (Notice that by Corollary 3.4, the map $W \mathcal{S} \rightarrow \mathcal{S}$ is well-defined.)

Similarly, the inclusion $S \hookrightarrow W \mathcal{S}$ given by $T \rightarrow W_{T}$ induces an inclusion $\imath: K \hookrightarrow \Sigma$. We identify K with its image $\imath(K)$, and call it (as well as any of its translates by an element of W) a chamber of Σ.

Proposition 5.13. Let (W, S) be a Coxeter system with Davis complex $\Sigma(W, S)$. Then the action of W on Σ is proper and cocompact.

Proof. By definition, Σ is locally finite and given the induced topology as a subspace of \mathbb{R}^{n}. Consider the orbit space

$$
W \backslash \Sigma=\left\{\left[W_{T}\right] \mid T \subseteq S \text { spherical }\right\}
$$

$W \backslash \Sigma$ is homeomorphic to the chamber K (compare [Davis, p.64], Davis, Theorem 7.2.4]). Because S is finite, K is compact. It follows that $W \backslash \Sigma$ is compact, that is, W acts cocompactly on Σ. The remaining properties are clear.

Figure 13: Davis-Komplex for D_{6} (as poset)

Figure 14: Davis-Komplex for D_{∞} (as poset)

5.2 The Davis complex as CW complex

We now wish to endow the Davis complex Σ with a cell structure, coarser than its simplicial structure, such that each cell is a Coxeter polytope.

Definition 5.14. A CW complex is a filtration

$$
\emptyset=X^{(-1)}=X^{(0)} \subset X^{(1)} \subset \cdots \subset X^{(n)}=X, \quad n \in \mathbb{N}
$$

which is defined inductively over:

- $X^{(0)}=\bigsqcup\{\mathrm{Pt}\}$, equipped with the discrete topology;
- $X^{(j)}:=X^{(j-1)} \bigsqcup_{\alpha} D_{\alpha}^{j} / x \sim f_{\alpha}(x)$ with the quotient topology defined by the attaching map

$$
f_{\alpha}: \delta D_{\alpha}^{j} \rightarrow X^{(j-1)}
$$

where D^{j} are j-dimensional balls. $X^{(j)}$ is called the j-skeleton.
The following Lemma shows that when a Coxeter group W is finite, we can identify the simplicial complex $\Sigma(W, S)$ with the barycentric subdivision of the associated Coxeter polytope. That is, $\Sigma(W, S)$ is topologically a cell.

Lemma 5.15 ([Davis, Lemma 7.3.3]). Suppose W is finite and that C is its associated Coxeter polytope. Let $\mathcal{F}(C)$ be its face poset, and x a generic point. Then the correspondence $w \rightarrow w x$ induces an isomorphism of posets, $W \mathcal{S} \cong \mathcal{F}(C)$. In other words, a subset of W corresponds to the vertex set of a face of C if and only if it is a coset of a special subgroup of W.

In case W is infinite, since the poset $(W \mathcal{S})_{\leq w W_{T}}$ is isomorphic to $W_{T}\left(\mathcal{S}_{\leq T}\right)$, the face corresponding to $\mathcal{S}_{\leq w W_{T}}$ is isomorphic to the barycentric subdivision of a Coxeter cell of type \bar{W}_{T}. So we can put a cell structure on Σ, coarser than its simplicial structure, by identifying each such barycentric subdivision with the corresponding Coxeter cell.

Proposition 5.16 ([Davis, Proposition 7.3.4]). Let (W, S) be a Coxeter system. The Davis complex Σ is given inductively by:

- O-cells: $\left\{w W_{\emptyset}\right\}$ where $W_{\emptyset}=\mathbb{1}$. It follows:

$$
\Sigma^{(0)}=\{w \mid w \in W\}
$$

- To construct the 1-skeleton $\Sigma^{(1)}$, consider the cosets:

$$
\left\{w W_{\{s\}} \mid w \in W, s \in S\right\}, \quad w W_{\{s\}}=\{w, w s\} .
$$

Attach 1-dimensional balls (i.e. intervals) to each pair (of 0-cells) $\{w, w s\}$. As S generates W, it follows that $\Sigma^{(1)}$ is the (geometric realisation of) $\operatorname{Cay}(W, S)$.

- To construct the n-skeleton $\Sigma^{(n)}$, consider the cosets:

$$
U:=\left\{w W_{T} \mid w \in W, T \subseteq S \text { spherical, }|T|=n\right\}
$$

Attaching n-dimensional balls to $u \in U$ in $\Sigma^{(n-1)}$ then results in the n-skeleton $\Sigma^{(n)}$.

Remark. Since the generating set S of a Coxeter system (W, S) is finite, we have $\Sigma=\Sigma^{(n)}$ for some $n<\infty$. In general, Σ may however have infinitely many cells, for example when W is infinite.

The Davis complex is simply connected, as stated by the following proposition.

Proposition 5.17 ([Thomas, Lemma 5.26], Davis, 7.3.5]). Σ is simply connected, i.e. Σ is path-connected and $\pi_{1}(\Sigma)$ is the trivial group.

Example 5.18. Let $W \cong D_{6}$. The 0-skeleton $\Sigma^{(0)}$ is given by $\{1, s, s t, s t s, t s, t\}$. For every coset $w W_{\{s\}}$ and $w W_{\{t\}}$ we have the intervals:

$\{\mathbb{1}, s\}$	\bigcirc
$\{s, s t\}$	\bigcirc
\{st, sts \}	\bigcirc
$\{s t s, t s\}$	\bigcirc
$\{t, t s\}$	$\bigcirc \bigcirc$
$\{1, t\}$	\bigcirc

Table 1: 1-cells for D_{6}
We attach these intervals to the corresponding vertices. In the 2-skeleton we have a disc D^{2}, attached to the vertices $W_{\{s, t\}}=W$. ("Fill the Cayley graph")

Figure 15: Davis complex for D_{6} (as CW-Komplex)
In general, if W is finite, there is an $|S|$-dimensional cell, $|W| 0$-dimensional cells, and $|T|$-dimensional sells for all subsets $T \subseteq S$.

5.3 The CAT(0) inequality

The definition of Σ as a CW complex has allowed us to easily derive its topological properties. We however have little information on the attaching maps. We now wish to define a metric on the Davis complex Σ, such that this metric satisfies the $\operatorname{CAT}(0)$ inequality.

Definition 5.19. A triangle Δ in a metric space X is a configuration of three geodesic segments ("edges") connecting three points ("vertices") in pairs.

A (Euclidean) comparison triangle for Δ is a triangle Δ^{*} in \mathbb{R}^{2} with the same edge lengths. (Such comparison triangles always exist.)

If Δ^{*} is a comparison triangle for Δ, then for each edge of Δ there is a well-defined isometry, denoted by $x \rightarrow x^{*}$, which takes the given edge of Δ onto the corresponding edge of Δ^{*}.

Figure 16: The CAT(0)-inequality

Definition 5.20. A metric space X satisfies the CAT(0) inequality (or is a CAT(0)-space) if the following two conditions hold:

1. X is a geodesic space;
2. For any triangle Δ, and any two points $x, y \in \Delta$, we have:

$$
d(x, y) \leq d^{*}\left(x^{*}, y^{*}\right)
$$

where x^{*}, y^{*} are the corresponding points in the comparison triangle Δ^{*}, and d^{*} is the distance in \mathbb{R}^{2}.

Remark 5.21. Similarly, a geodesic metric space X is CAT(-1) if geodesic triangles in X are "no fatter" than comparison triangles in H^{2}.

A metric space X is $\operatorname{CAT}(1)$ if all points in X at distance $<\pi$ are connected by geodesics, and all geodesic triangles in X with perimeter $<2 \pi$ are "no fatter" than comparison triangles in a hemisphere of \mathbb{S}^{2}.

Example 5.22.

- Pre-Hilbert spaces are CAT(0).
- When endowed with the induced metric, a convex subset of Euclidean space \mathbb{R}^{n} is $\operatorname{CAT}(0)$.
- Hyperbolic space H^{n} is $\operatorname{CAT}(0)$. Generally, we can show that CAT(-1) spaces are $\operatorname{CAT}(0)$ and $\operatorname{CAT}(1)$.

5.4 The Davis complex is CAT(0)

We will add a metric to Σ as follows. First we will define a Coxeter polytope through the Tits representation of (W, S). We will then assign a (fixed) polytope of this type to every cell in Σ, turning Σ into a polyhedral complex.

Definition 5.23. A (euclidean) polyhedral complex is a (finite-dimensional) CW complex, where every n-cell is metrised as a convex polytope in \mathbb{R}^{n}, and the restrictions of the attaching maps to codimension-1 faces are isometries.

Theorem 5.24 ([Bridson, I.7.19]). If a connected polyhedral complex X has finitely many isometry types of cells, then X is a complete geodesic space.

We wish to show:
Theorem 5.25. Σ is a complete $C A T(0)$ space.
Proof. We show how to endow Σ with a piecewise Euclidean metric. Choose a sequence of positive real numbers $\underline{d}=\left(d_{s}\right)_{s \in S}$ with each $d_{s}>0$. For every finite W_{T}, let

$$
\sigma_{T}: W_{T} \rightarrow G L_{n}(\mathbb{R}), \quad n=|T|
$$

denote the Tits representation. For every $t \in T$, the reflection σ_{t} fixes the hyperplane H_{t} with unit normal vector e_{t}, and for $t, t^{\prime} \in T$, the hyperplanes $H_{t}, H_{t^{\prime}}$ meet at dihedral angle $\frac{\pi}{m}$, where $\left\langle t, t^{\prime}\right\rangle \cong D_{2 m}$. Let C_{T} be the chamber given by

$$
C_{T}=\left\{x \in \mathbb{R}^{n} \mid B\left(x, e_{t}\right) \geq 0 \forall t \in T\right\}
$$

Then there is a unique $x_{T}=x_{T}(\underline{d})$ such that $d\left(x_{T}, H_{t}\right)=d_{t}>0$ for any $t \in T$. We now identify every cell of Σ with vertex set $w W_{t}$ with the Coxeter polytope of C_{T}, i.e. the convex hull of the W_{T} orbit of x_{T}.

Figure 17: Coxeter polytope for the action of $W=D_{4}$
If we set $d_{s}=\frac{1}{2}$ for all $s \in S$, then every edge in the 1 -skeleton has length 1. This implies:

- Σ is a polyhedral complex.
- There are only finitely many isometry classes of cells.

By Theorem 5.24, Σ is then a complete geodesic space. Furthermore, Σ is simply connected by Proposition 5.17. (In particular, Σ equals its universal cover $\tilde{\Sigma}$.) By the Cartan-Hadamard theorem for CAT(0) spaces, it
then suffices to show that Σ is locally CAT(0). For details, see Davis, Section 12.1].

Theorem 5.26 (Cartan-Hadamard theorem for CAT(0) spaces, Bridson, II.4.1]). Let X be a complete, connected geodesic metric space. If X is locally $\operatorname{CAT}(0)$, then the universal cover of X is $\operatorname{CAT}(0)$.

Remark 5.27. In general polyhedral complexes are not CAT(0). Let X denote the 2 -skeleton of a cube in \mathbb{R}^{3}. Geodesic triangles in X which contain a vertex x are "thicker" than comparison triangles in \mathbb{R}^{2}.

Figure 18: A polyhedral complex which is not CAT(0).

6 Flats in the Davis complex

In general, the Davis complex is not a manifold. As with symmetric spaces, we study flat subspaces (flats) in the Davis complex, that is, spaces which are isometric to \mathbb{R}^{n} for some $n \in \mathbb{N}$. In particular, we are interested in collections of flats with isolated elements. We recall a few basic definitions in $\operatorname{CAT}(0)$ geometry before expanding on this statement.

Definition 6.1. A subset Y of a $\operatorname{CAT}(0)$ space (X, d) is called convex if the geodesic segment joining any two points of Y is entirely contained in Y. A map $f: X \rightarrow \mathbb{R}$ is a convex map if for each geodesic $\rho: I \rightarrow X$, the composed map $f \circ \rho: I \rightarrow \mathbb{R}$ is convex. In that case, sublevel sets of f are convex subsets of X.

Clearly, a convex subset of a CAT(0) space is itself a CAT(0) space when endowed with the induced metric.

Lemma 6.2 ([Bridson, Cor. II. 2.5]). Given a complete convex subset $Y \subset$ X, the distance to Y, namely

$$
\begin{aligned}
d_{Y}: X & \longrightarrow \mathbb{R} \\
x & \longmapsto d(x, Y)=\inf _{y \in Y} d(x, y)
\end{aligned}
$$

is a convex map. Its sublevel sets are called tubular neighborhoods of Y and denoted by $\mathcal{N}_{r}(Y)=d_{Y}^{-1}([0, r])$.

6.1 Products in the Davis complex

Recall that a group virtually has some property if a subgroup of finite index has the property. For example, a finite group is virtually trivial. Since Coxeter groups have faithful linear representations, they are virtually torsion free. [Davis, Corollary D.1.4] In this section, we characterize when Coxeter groups are virtually abelian, and the consequences for the Davis complex.

Theorem 6.3 (Davis, Theorem 12.3.5], [Vinberg|). Let (W, S) be an irreducible Coxeter system. Then W is virtually abelian if and only if W is either a finite or an affine Coxeter group.

Corollary 6.4. Let (W, S) be a Coxeter system, and $T \subset S$ a subset such that W_{T} is virtually abelian. Then $\Sigma\left(W_{T}, T\right)$ is a product of \mathbb{E}^{n} (for some $n \in \mathbb{N}$) and compact polyhedra P.

Proof.

- Let W be finite. Then by definition, the Davis complex Σ is a compact polyhedron.
- Let W be an affine Coxeter group. Then Σ is a tesselation of \mathbb{E}^{n} by a simple convex polytope P.
- Suppose that W decomposes as $(W, S)=\left(W_{1} \times W_{2}, S_{1} \sqcup S_{2}\right)$. Then $\mathcal{S}(W, S)=\mathcal{S}\left(W_{1}, W_{2}\right) \times \mathcal{S}\left(W_{2}, S_{2}\right)$ by Example 5.4, and a Coxeter polytope $C_{W_{T}}$ decomposes as $C_{W_{T_{1}}} \times C_{W_{T_{2}}}$ by Example 2.5. 3. It follows that $\Sigma(W, S)$ decomposes as $\Sigma\left(W_{1}, S_{1}\right) \times \Sigma\left(W_{2}, S_{2}\right)$.
- By Theorem 6.3, W_{T} is the product of affine and finite Coxeter groups. By the above, the claim then holds.

Example 6.5. Consider $W:=\left(\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}\right) \times\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$ with generating set $S:=\left\{s_{1}, s_{2}, s_{3}\right\} \sqcup\left\{t_{1}, t_{2}\right\}$ and Coxeter diagram:

The Cayley graph is given by the Cartesian product of the Cayley graphs of the direct factors $C_{2}^{* 3}$ and $C_{2}^{* 2}$. Thus we know the 1-skeleton. Furthermore, as $|S|=5$ and W is an infinite group, we have at most spherical subgroups of rank 4. We consider the different cases:

Case 1. $|T|=2$, that is

$$
\begin{aligned}
T= & \left\{s_{1}, t_{1}\right\} \vee\left\{s_{1}, t_{2}\right\} \vee\left\{s_{1}, s_{2}\right\} \vee\left\{s_{1}, s_{3}\right\} \vee\left\{s_{2}, s_{3}\right\} \\
& \vee\left\{t_{1}, t_{2}\right\} \vee\left\{s_{2}, t_{1}\right\} \vee\left\{s_{2}, t_{2}\right\} \vee\left\{s_{3}, t_{1}\right\} \vee\left\{s_{3}, t_{2}\right\}
\end{aligned}
$$

$W_{\left\{s_{1}, s_{2}\right\}}, W_{\left\{t_{1}, t_{2}\right\}}, W_{\left\{s_{2}, s_{3}\right\}}$ and $W_{\left\{s_{1}, s_{3}\right\}}$ are infinite dihedral groups. This leaves the groups $W_{\left\{s_{i}, t_{j}\right\}}, i \in\{1,2,3\}$ and $j \in\{1,2\}$. The s_{i} and t_{j} commute by definition, thus the corresponding groups are finite:

$$
\begin{array}{ll}
\left\langle s_{1}, t_{1}\right\rangle=\left\{1, s_{1}, t_{1}, s_{1} t_{1}\right\}, & \left\langle s_{1}, t_{2}\right\rangle=\left\{1, s_{1}, t_{2}, s_{1} t_{2}\right\}, \\
\left\langle s_{2}, t_{1}\right\rangle=\left\{1, s_{2}, t_{1}, s_{2} t_{1}\right\}, & \left\langle s_{2}, t_{2}\right\rangle=\left\{1, s_{2}, t_{2}, s_{2} t_{2}\right\}, \\
\left\langle s_{3}, t_{1}\right\rangle=\left\{1, s_{3}, t_{1}, s_{3} t_{1}\right\}, & \left\langle s_{3}, t_{2}\right\rangle=\left\{1, s_{3}, t_{2}, s_{3} t_{2}\right\} .
\end{array}
$$

These are precisely the (vertex sets of the) cells of the "filled in" Cayley graph.

Case 2. $|T|=3$, then either W_{T} must contain an infinite dihedral subgroup, or $W_{T}=\left\langle s_{1}, s_{2}, s_{3}\right\rangle$ which is infinite. The case $|T|=4$ is similar.

6.2 Flat subspaces

Definition 6.6. Let (W, S) be a Coxeter system. A flat subspace in the Davis complex Σ is a subset $F \subseteq \Sigma$ which is isometric to \mathbb{R}^{n} for some $n \geq 2$. We call a flat subspace special if there exists a special subgroup W_{T} for $T \subseteq S$ such that $\langle J\rangle$ is virtually abelian.

Definition 6.7. Let \mathfrak{F} be a collection of closed convex subsets of Σ. We say the elements of \mathfrak{F} are isolated in Σ if the following conditions:
(A) There is a constant $D<\infty$ such that each flat F of Σ lies in a D tubular neighborhood of some $C \in \mathfrak{F}$.
(B) For each positive $r<\infty$ there is a constant $\rho=\rho(r)<\infty$ so that for any two distinct elements $C, C^{\prime} \in \mathfrak{F}$ we have

$$
\operatorname{diam}\left(\mathcal{N}_{r}(C) \cap \mathcal{N}_{r}\left(C^{\prime}\right)\right)<\rho,
$$

where $\mathcal{N}_{r}(C)$ denotes the r-tubular neighborhood of C.
If \mathfrak{F} consists of flats, we say that Σ has isolated flats.
The main result for isolated flats is given by the following theorem.
Proposition 6.8. Let (W, S) be a Coxeter system. The following assertions are equivalent:

1. For all non-spherical $J_{1}, J_{2} \subset S$ such that $\left[J_{1}, J_{2}\right]=1$, the group $\left\langle J_{1} \cup\right.$ $\left.J_{2}\right\rangle$ is virtually abelian.
2. For each minimal hyperbolic $J \subset S$, the set J^{\perp} is spherical.

Proof. We show the equivalence $\neg(i) \Leftrightarrow \neg(i i)$.

- $\neg(i) \Rightarrow \neg(i i)$.

Let $J_{1}, J_{2} \subset S$ such that $\left\langle J_{1} \cup J_{2}\right\rangle$ is not virtually abelian. Note that $\left[J_{1}, J_{2}\right]=1$ implies that $J_{2} \subset J_{1}^{\perp}\left(^{*}\right)$, and that J is the direct product $\left\langle J_{1}\right\rangle \times\left\langle J_{2}\right\rangle$. Then either J_{1} or J_{2} is non-affine and non-spherical by Theorem 6.3. Denote this set by J.
By assumption both J_{1} and J_{2} are non-spherical, thus by $\left(^{*}\right) J^{\perp}$ is nonspherical as well. Any minimal non-spherical and non-affine subset I of J is minimal hyperbolic, and since $I \subset J$ we have $I^{\perp} \supset J^{\perp}$. In particular, I^{\perp} is non-spherical, failing (ii).

- $\neg(i i) \Rightarrow \neg(i)$.

Assume there is some minimal hyperbolic $J \subset S$ such that J^{\perp} is nonspherical. Then J is non-spherical, $\left[J, J^{\perp}\right]=1$ and the group $\left\langle J \cup J^{\perp}\right\rangle$ is the direct product of a non-spherical, non-affine Coxeter group with a non-spherical Coxeter group, failing (i).

Theorem 6.9 ([Caprace, Corollary D]). Let (W, S) be a Coxeter system. The Davis complex Σ has isolated flats if and only the assertions in Proposition 6.8 are satisfied.

Using the above criterion, we give an example of a Coxeter system (W, S) where the Davis complex has isolated flats.

Example 6.10. Let $W:=\mathbb{Z}_{2} *(3,3,3)$ with Coxeter diagram

We show that W satisfies the conditions of Theorem 6.9, First note that (W, S) is not minimally hyperbolic - none of the possible diagrams for minimally hyperbolic groups of rank 4 match. We thus look at rank ≤ 3 subsets $J \subset S$ which may be. (Note there are no hyperbolic groups of rank ≤ 2. In particular •—— and • - - are dihedral groups, resp. spherical and affine.) By symmetry, it suffices to consider the subdiagram:

The set J^{\perp} is given by all vertices with distance $d>1$ to J :

It follows that $J^{\perp}=\emptyset$, thus $W_{J \perp}=\{1\}$. In particular, J^{\perp} is spherical. By the theorem, the Davis complex $\Sigma(W, S)$ has isolated flats.

We now give an example of a Coxeter group where the Davis complex Σ does not have isolated flats.

Example 6.11. Let $W^{\prime}:=\left(\mathbb{Z}_{2} * \mathbb{Z}_{2} * \mathbb{Z}_{2}\right) \times\left(\mathbb{Z}_{2} * \mathbb{Z}_{2}\right)$ be the Coxeter group from Example 6.5. We first compute which special subgroups result in flat subspaces in Σ.

Case 1. $|T|=3$. The "ladders" $\left\langle s_{i}, t_{1}, t_{2}\right\rangle, i \in\{1,2,3\}$ are homeomorphic to $\mathbb{R} \times[0,1]$ and equipped with a piecewise Euclidean metric. As $[0,1]$ is compact, these spaces cannot be homeomorphic (in particular, not isometric) to \mathbb{R}^{2}. The cases $\left\langle s_{i}, s_{j}, t_{k}\right\rangle$ with $k \in\{1,2\}$ are similar.

Case 2. $|T|=4$. The groups $\left\langle s_{i}, s_{j}, t_{1}, t_{2}\right\rangle$ are isometric to \mathbb{R}^{2}, and thus result in a flat subspace in $\Sigma(W, S)$. Note that $\left\langle s_{1}, s_{2}, s_{3}, t_{k}\right\rangle$ are homeomorphic to $[0,1] \times \mathbb{R}^{2}$ and thus not isometric to \mathbb{R}^{3}.

Now assume that Σ has isolated flats. In particular, there is a collection of flats \mathfrak{F} which satisfies condition (B). Let $r=1$ and consider the tubular neighborhoods $\mathcal{N}_{1}\left(\Sigma\left(W_{1}, S_{1}\right)\right)$ and $\mathcal{N}_{1}\left(\Sigma\left(W_{2}, S_{2}\right)\right)$. Then these neighbourhoods intersect in the "ladder" $\Sigma\left(\left\langle s_{1}, t_{1}, t_{2}\right\rangle\right)$, which has infinite diameter; a contradiction.

We could read directly from the diagram that W^{\prime} does not have isolated flats, again by 6.9. Let $J_{1}:=\left\{s_{1}, s_{2}, s_{3}\right\}$ and $J_{2}:=\left\{t_{1}, t_{2}\right\}$. Then clearly $\left[J_{1}, J_{2}\right]=1$ and J_{1}, J_{2} are non-spherical. However, $\left\langle J_{1} \cup J_{2}\right\rangle=W^{\prime}$ is not virtually abelian, as the factor $W_{J_{1}}$ is not an affine Coxeter system.

References

[Bahls] P. Bahls. The isomorphism problem in Coxeter groups, 2005.
[Abramenko] P. Abramenko, K. Brown. Buildings - Theory and Applications, 2008.
[Bjorner] A. Bjorner, F. Brenti. Combinatorics of Coxeter Groups, 2005.
[Elements] N. Bourbaki. Éléments de mathématique - Algèbre - Chapitres 1 à 3, 1981.
[Groupes] N. Bourbaki. Groupes et algèbres de Lie - Chapitres 4 à 6, 1981.
[Bridson] M.R. Bridson. Metric spaces of non-positive curvature, 1999.
[Caprace] P. Caprace. Buildings with isolated subspaces and relatively hyperbolic Coxeter groups, 2013.
[Davis] M.W. Davis. The geometry and topology of Coxeter groups, 2008.
[Hatcher] A. Hatcher. Algebraic Topology, 2001.
[Hall] B. Hall. Lie Groups, Lie Algebras, and Representations, 2003.
[Humphreys] J. E. Humphreys. Reflection Groups and Coxeter Groups, 1990.
[Imrich] W. Imrich, S. Klavžar. Product graphs, Structure and Recognition, 2000.
[Loeh] C. Löh. Introduction to geometric group theory, 2015.
[Ol'shanskii] A. Yu. Ol'shanskii. Geometry of defining relations in groups, 1991.
[Massey] W. S. Massey. A Basic Course in Algebraic Topology, 1991.
[Suter] R. Suter. Spiegelungsgruppen, 2008.
[Thomas] A. Thomas. Geometric and Topological Aspects of Coxeter Groups and Buildings, 2018.
[Vinberg] G. Margulis, E. B. Vinberg. Some linear groups virtually having a free quotient, Journal of Lie Theory, 10:171-180, 2000.

[^0]: ${ }^{1}$ The conjugation problem for a finitely generated group G asks for the existence of an algorithm which can determine if two elements in G are conjugates. The word problem considers if any given element in G is the neutral element. [Loeh, Definition 7.4.1]

[^1]: ${ }^{2}$ The affine Coxeter groups are (up to the choice of a root system) the affine Weyl groups, defined through coroot lattices. See Humphreys, 4. Affine reflection groups] for details on this construction. A nice visual representation is through so-called Stiefel diagrams. Hall 13.6 The Stiefel Diagram]

[^2]: ${ }^{3}$ These groups are often called "(standard) parabolic", after Bourbaki and relations to parabolic subgroups in Lie theory resp. algebraic groups. We call them "special", as the strong algebraic properties in Proposition 3.2 do not hold for (finitely presented) groups in general.
 ${ }^{4}$ The reason for the term "spherical" is that if (W, S) is an irreducible Coxeter system with W finite, then W acts naturally on the sphere. Davis, Theorem 6.12.9]

